Selective Catalytic Reduction System Ammonia Injection Control Based on Deep Deterministic Policy Reinforcement Learning

نویسندگان

چکیده

The control of flue gas emission in thermal power plants has been a topic concern. Selective catalytic reduction technology widely used as an effective treatment technology. However, precisely controlling the amount ammonia injected remains challenge. Too much not only causes secondary pollution but also corrodes reactor equipment, while too little does effectively reduce NOx content. In recent years, deep reinforcement learning achieved better results than traditional methods decision making and control, which provides new for selective systems. purpose this research is to design intelligent controller using technology, can accurately injection, achieve higher denitrification effect less pollution. To train controller, high-precision virtual denitration environment first constructed. order make more realistic, was designed special structure with two decoders unique approach fitting environment. A deterministic policy agent ammonia. stable, actor-critic framework experience pool were adopted. show that emissions nitrogen oxides at outlet after training

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

On-Policy vs. Off-Policy Updates for Deep Reinforcement Learning

Temporal-difference-based deep-reinforcement learning methods have typically been driven by off-policy, bootstrap Q-Learning updates. In this paper, we investigate the effects of using on-policy, Monte Carlo updates. Our empirical results show that for the DDPG algorithm in a continuous action space, mixing on-policy and off-policy update targets exhibits superior performance and stability comp...

متن کامل

Map-based Multi-Policy Reinforcement Learning: Enhancing Adaptability of Robots by Deep Reinforcement Learning

In order for robots to perform mission-critical tasks, it is essential that they are able to quickly adapt to changes in their environment as well as to injuries and or other bodily changes. Deep reinforcement learning has been shown to be successful in training robot control policies for operation in complex environments. However, existing methods typically employ only a single policy. This ca...

متن کامل

Parameter Sharing Deep Deterministic Policy Gradient for Cooperative Multi-agent Reinforcement Learning

Deep reinforcement learning for multi-agent cooperation and competition has been a hot topic recently. This paper focuses on cooperative multi-agent problem based on actor-critic methods under local observations settings. Multi agent deep deterministic policy gradient obtained state of art results for some multi-agent games, whereas, it cannot scale well with growing amount of agents. In order ...

متن کامل

Traffic Light Control Using Deep Policy-Gradient and Value-Function Based Reinforcement Learning

Recent advances in combining deep neural network architectures with reinforcement learning techniques have shown promising potential results in solving complex control problems with high dimensional state and action spaces. Inspired by these successes, in this paper, we build two kinds of reinforcement learning algorithms: deep policy-gradient and value-function based agents which can predict t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Energy Research

سال: 2021

ISSN: ['2296-598X']

DOI: https://doi.org/10.3389/fenrg.2021.725353